Qus : 3 MCA NIMCET PYQ 2022 3 If {\Bigg{(}\frac{x}{a}\Bigg{)}}^2+{\Bigg{(}\frac{y}{b}\Bigg{)}}^2=1 , (a{\gt}b) and {x}^2-{y}^2={c}^2 cut at right angles, then
1 {a}^2+{b}^2=2{c}^2 2 {b}^2-{a}^2=2{c}^2 3 {a}^2-{b}^2=2{c}^2 4 {a}^2-{b}^2={c}^2 Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2022 PYQ Solution If
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 and
\frac{x^2}{c^2}+\frac{y^2}{d^2}=1 are orthogonal.
Then
a^2-b^2=c^2-d^2
Similarly
If \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 and x^2-y^2=c^2 are orthogonal.
It means
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 and \frac{x^2}{c^2}+\frac{y^2}{-c^2}=1 are orthogonal
Then
a^2-b^2=c^2-(-c^2)
a^2-b^2=2c^2
Qus : 4 MCA NIMCET PYQ 2024 1 If the line a^2 x + ay +1=0 , for some real number a , is normal to the curve xy=1
then
1 a<0 2 0<a<1 3 a>0 4 -1<a<1 Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2024 PYQ Solution
Problem:
The line
a^2x + ay + 1 = 0
is normal to the curve
xy = 1
. Find possible values of a \in \mathbb{R} .
Step 1: Slope of Line
Rewrite:
y = -a x - \frac{1}{a}
→ slope = -a
Step 2: Curve Derivative
xy = 1 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}
Slope of normal = \frac{x}{y}
Match Slopes
-a = \frac{x}{y} \Rightarrow x = -a y
Plug into Curve
xy = 1 \Rightarrow (-a y)(y) = 1 \Rightarrow y^2 = -\frac{1}{a}
For real y , we need a < 0
✅ Final Answer:
\boxed{a < 0}
Qus : 11 MCA NIMCET PYQ 2023 2
Find foci of the equation x^2 + 2x – 4y^2 + 8y – 7 = 0
1 (\sqrt[]{5}\pm1,1) 2 (-1\pm\sqrt[]{5},1) 3 (-1,\sqrt[]{5}\pm1) 4 (1,-1\pm\sqrt[]{5}) Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2023 PYQ Solution
Finding Foci of a Conic
Given Equation: x^2 + 2x - 4y^2 + 8y - 7 = 0
Step 1: Complete the square
⇒ (x + 1)^2 - 4(y - 1)^2 = 4
Rewriting: \frac{(x + 1)^2}{4} - \frac{(y - 1)^2}{1} = 1
This is a horizontal hyperbola with:
Center: (-1, 1)
a^2 = 4 , b^2 = 1
c = \sqrt{a^2 + b^2} = \sqrt{5}
✅ Foci:
(-1 \pm \sqrt{5},\ 1)
[{"qus_id":"3767","year":"2018"},{"qus_id":"4293","year":"2017"},{"qus_id":"11115","year":"2022"},{"qus_id":"11141","year":"2022"},{"qus_id":"11518","year":"2023"},{"qus_id":"11637","year":"2024"},{"qus_id":"11665","year":"2024"},{"qus_id":"10215","year":"2015"},{"qus_id":"10440","year":"2014"},{"qus_id":"10465","year":"2014"},{"qus_id":"10483","year":"2014"}]